Epigenetic upregulation of p66shc mediates low-density lipoprotein cholesterol-induced endothelial cell dysfunction.
نویسندگان
چکیده
Hypercholesterolemia characterized by elevation of low-density lipoprotein (LDL) cholesterol is a major risk factor for atherosclerotic vascular disease. p66shc mediates hypercholesterolemia-induced endothelial dysfunction and atheromatous plaque formation. We asked if LDL upregulates endothelial p66shc via changes in the epigenome and examined the role of p66shc in LDL-stimulated endothelial cell dysfunction. Human LDL stimulates human p66shc promoter activity and p66shc expression in human endothelial cells. LDL leads to hypomethylation of two CpG dinucleotides and acetylation of histone 3 in the human p66shc promoter. These two CpG dinucleotides mediate LDL-stimulated p66shc promoter activity. Inhibition or knock down of DNA methyltransferases negates LDL-induced endothelial p66shc expression. p66shc mediates LDL-stimulated increase in expression of endothelial intercellular adhesion molecule-1 (ICAM1) and decrease in expression of thrombomodulin (TM). Mirroring these changes in ICAM1 and TM expression, p66shc mediates LDL-stimulated adhesion of monocytes to endothelial cells and plasma coagulation on endothelial cells. These findings indicate that LDL cholesterol upregulates human endothelial p66shc expression via hypomethylation of CpG dinucleotides in the p66shc promoter. Moreover, they show that LDL-stimulated p66shc expression mediates a dysfunctional endothelial cell surface, with proadhesive and procoagulant features.
منابع مشابه
Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc.
AIMS Hyperhomocysteinaemia is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial dysfunction. Homocysteine modulates cellular methylation reactions. P66shc is a protein that promotes oxidative stress whose expression is governed by promoter methylation. We asked if homocysteine induces endothelial p66shc expression via hypomethylation of ...
متن کاملDual Role of Endothelial Nitric Oxide Synthase in Oxidized LDL-Induced, p66Shc-Mediated Oxidative Stress in Cultured Human Endothelial Cells
BACKGROUND The aging gene p66Shc, is an important mediator of oxidative stress-induced vascular dysfunction and disease. In cultured human aortic endothelial cells (HAEC), p66Shc deletion increases endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) bioavailability via protein kinase B. However, the putative role of the NO pathway on p66Shc activation remains unclear. This...
متن کاملOxidized low-density lipoprotein activates p66Shc via lectin-like oxidized low-density lipoprotein receptor-1, protein kinase C-beta, and c-Jun N-terminal kinase kinase in human endothelial cells.
OBJECTIVE Deletion of the mitochondrial gene p66(Shc) protects from endothelial dysfunction and atherosclerotic plaque formation in mice fed a high-fat diet. However, the molecular mechanisms underlying this beneficial effect have not yet been delineated. The present study was designed to elucidate the proatherogenic mechanisms by which p66(Shc) mediates oxidized low-density lipoprotein (oxLDL)...
متن کاملP66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1.
OBJECTIVE Diabetes mellitus causes vascular endothelial dysfunction and alters vascular microRNA expression. We investigated whether endothelial microRNA-34a (miR-34a) leads to diabetic vascular dysfunction by targeting endothelial sirtuin1 (Sirt1) and asked whether the oxidative stress protein p66Shc governs miR-34a expression in the diabetic endothelium. APPROACH AND RESULTS MiR-34a is upre...
متن کاملOxidized LDL downregulates ATP-binding cassette transporter-1 in human vascular endothelial cells via inhibiting liver X receptor (LXR).
OBJECTIVE ATP-binding cassette transporter-1 (ABCA1) mediates the active efflux of cholesterol and phospholipids, playing an important role in cholesterol homeostasis and atherogenesis. Oxidized low density lipoprotein (oxLDL) is an atherogenic molecule associated with the vascular endothelial dysfunction and development of atherosclerotic plaque. This report describes the effect of copper-cata...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 303 2 شماره
صفحات -
تاریخ انتشار 2012